Showing posts with label unplugged. Show all posts
Showing posts with label unplugged. Show all posts

Sunday, 14 June 2015

Introducing Selection with Guess Who


I have discussed how the board game guess who can be used to introduce the concepts of variables in a previous post, but it occurred to me recently that the whole structure of the game is underpinned by selection statements. Therefore it seemed like a perfect way to introduce the concept to children.

Every time a child asks a question in guess who, they are creating a selection statement to follow. They know that if the answer is yes they have to knock down the characters lacking in the characteristic, but if the answer is no they knock down those with the characteristic. By getting children to play guess who, of which there are many cheaper titles with amusing variations on the name available, we can introduce them to the concept of selection using a context they are already familiar with.



To start this session, introduce the children to the idea of creating then, if else statements by asking how the player should respond to certain questions. I have used the scratch selection block to structure this, as the activity was original designed as an unplugged activity for a unit that developed the concept of selection using scratch (I suggest that children mimic the programming vocabulary and syntax they will be using in the unit). After this was introduced, children then played Guess Who and recorded each question they asked and the subsequent actions as if, then else statements. Understanding can be assessed further by asking children to deduce the questions that had been asked from given then and else statements, and by sequencing the questions of others.

After this the children were using scratch to create their own topic based quizzes using the ask and answer functions. However, after sharing the unplugged idea on twitter, Tim Head (@MrHeadComputing) suggested that someone should program a version of guess who. So, in the limited time I had available, I created a simple scratch program that uses events to create questions based on previous answers. Rather than playing the game against an opponent, you pick a character and the computer works out who your character is. I haven't used it with students yet, but can imagine that it would allow children to engage in purposeful computational thinking.  The Scratch file can be found here.
Ben Davies - @b3n3davies












Sunday, 8 March 2015

Unplugged Variables

For the last few years, when teaching variables to key stage 2 pupils, I've mainly focused on scoring systems, timers, lives etc in Scratch games and introduced the concept as a value that is changed. This sat well with children's scientific understanding of the word and was readily accepted.

When ICT evolved into Computing, and variables were mentioned explicitly in the key stage 2 program of study, I thought my explanation of the concept needed to be more accurate. Below is the basic explanation that I give to children and some unplugged activities that can be used to introduce the concept.

Variables are places in computer programs that data can be stored. This data can be changed, recalled or used as required. The variable can only contain one value at a time. Data in variables can be represented as numbers, statements, dates etc. 

Where's the Variable?

As a class we looked at a range of images showing variables in software applications and in other forms like calendars and scoreboards. We identified the variable(s) and discussed when they would change - when a piggie is destroyed increase score variable by 500 (angry birds).



Comparing Variables


I used this activity to support programming a game to identify the winner when a points system is used. The scoreboard from a soccer game gives plenty of paired variables that can be compared. Using these values, we decided which team had scored the most goals, had the most corners, made the most saves. Then we discussed how to write an algorithm that would compare the values and state who the winner is (we found it useful to give pairs of variables names - saves 1 & saves 2). Example if saves 1 > saves 2 then say "Team 1 Winner"; if saves 1< saves 2 then say "Team 2 Winner". If saves 1 = saves 2 then say "Draw no winner"

Guess Who

In this activity we used the statements true/false to create facts about Guess Who characters.
First pupils had to identify the characters from the information given.
Glasses: True
Hat: False
Blonde Hair: True
Moustache: False

Once this understanding was secure, the children used the full set of characters to create variable statements to describe other characters. They then swapped statements and worked out who the statements where describing.

Dice Games

The first activity required children to follow an algorithm to create a scoring game using dice. After playing the game and discussing what certain parts of the algorithm meant, they were then challenged to design their own dice scoring game and write an algorithm for it.

Whenever I use an unplugged activity, I attempt to match the language used in it to the predetermined vocabulary and syntax of the programming language we are using and, with variables, the way the concept will be used. Some of these activities attempt to mimic Scratch, others text-based languages. 

Thursday, 12 February 2015

CAS CPD Events

This term I will be running two CPD sessions on behalf of Computing at Schools.


The first course - Introducing Computer Science to the Primary Classroom (10/03/15)  - explains the computer science concepts and terminology of the new computing curriculum and explores a range of engaging unplugged activities (non IT) that can be used to introduce such concepts to the classroom. 

These activities include the algorithm or advice quiz; roboteach makes squash; human number sort; the selection dance; variable guess who.


The course was over subscribed when run last term. Below is some feedback from course attendees
  • "The activities shared were very useful"
  • "It was excellent"
  • "[the course] made me realise I had a better understanding of the concepts than I thought"
  • "great examples of unplugged resources"
  • "loads of practical ideas to use in the classroom" 

The second course - Using Makey-Makey Boards with Scratch (19/03/15) -  explores how Makey-Makey boards (more info here) can be used in conjunction with Scratch to program activities and games that use external inputs. As this session will be very hands-on, the numbers are strictly limited to 15 to ensure that all attendees have access to resources.

The session includes ideas on use a makey-makey board to test electric conductors; to control maze based games, control two player race games; play an onscreen instruments. 

Both courses will be run as twilight sessions from 4pm to 6pm at St Paul's Primary School in Withington (M20 4PG)  and the charge per attendee is £27.15. If you would like to book a place on either course please use the links below. Course attendees will be receive copies of resources used in the training sessions


Using Makey-Makey Boards with Scratch - https://www.eventbrite.co.uk/e/using-makey-makey-boards-with-scratch-registration-15350938069

In addition to these events, Sally Jordan will be hosting the termly South Manchester Primary CAS Hub meeting and CPD sessions on Scratch and Kodu - details below.

Next CAS Primary Hub is at Acacias Primary School on March 5th
Courses:
Introducing Scratch to Primary Teachers KS1 & KS2 on 26/03/2015 16:00 – 17:30
Using Scratch to deliver the Computing Curriculum in Primary Schools.
Exciting and engaging ideas for you and your class with practical activities to deliver straight away.
There will be an opportunity to gain practical experience using Scratch and to learn about the wide variety of plans and resources available.

Introduction to Kodu for Primary Teachers on 30/04/2015 16:00 – 17:30 at Acacias Primary School, Burnage.

Sally Jordan - Sally is Computing Co-ordinator at Acacias Primary School, and was appointed as a Primary Master Teacher (Level 2) in July 2014. She is currently teaching Computing across the school and Year 6 intervention groups.
Venue for both training courses is Acacias Primary School, Alexandra Drive, Burnage M19 2WW

For further information: sally.jordan@computingatschool.org.uk

Saturday, 7 February 2015

Databases using Top Trumps


Top Trump,  a childhood favourite, are a great way of introducing children to databases. A pack of top trumps is a database, they contain records/files and the data is organised into fields, each card has the same set of fields which enables the data to be compared.



I started the unit off by showing children how to create a database using 2investigate by Purple Mash. Each group was given a set of top trumps card and had to input the data from the cards into a collaborative database. When this was finished, the children got to play top trumps for a few minutes before I posed a question about how we could use the database to work out which field had the best chance of winning. I modelled to the children how to search individual fields and how to use greater than and less than searches. The information returned showed them how many cards were better than theirs for that particularly field. They were then able to make a mathematical choice about which field offered them the greatest chance of winning.

At home several children created their own databases from their own trop trumps card, two even created databases by using Wolfram Alpha (a class favourite) to research statistical data about football stadia.

Once the pupils had mastered the skills of designing, creating and searching databases, we moved on to applying the skills in a cross curricular context. In our topic work we had been studying natural disasters, so the children were asked to create a database about volcanoes. Using the idea of top trumps helped them to think about which fields to include: the pupils visualised the data on a top trump card. They then researched and created a database before querying it to answer questions devised by other children.




The children were clearly enthused by this unit of work and using top trumps gave them an easy way to understanding the vocabulary and purpose of databases.  

Ben Davies @b3ndavi3s 

Thursday, 30 October 2014

Is it an Algorithm?

If the new primary computing curriculum has achieved anything,  it is introducing the word algorithm into the vocabulary of most teachers. We now all know that algorithms are just a set of instructions to get something done and range from knitting patterns to recipes, from lego instructions to programs written in logo. 

This term we have introduced the word algorithm to pupils EYFS. The children pretended to be a pirate, the gruffalo, even the Queen when saying the word. They have also enjoyed singing the algorithm round.

 











There are key features to algorithm that we can use to identify if something is an algorithm. They must have a outcome: something has to be achieved. They need to be sequenced into a set of steps: if these steps are not followed in order the end product will not be reached. So a no parking sign is not an algorithm but instructions on how to use a parking meter are.



Using this criteria,  pupils can sort images into algorithms or advice. This can be started in class, using this presentation, and continued at home with pupils collecting images of everyday algorithms. Before attempting to understand what a program is, pupils' need a sound understanding of what an algorithm is and isn't.